Outline

• Conventional Lighting vs New Technologies
• UL’s Balancing Act
• Role of Third-Party Testing Lab
• Impact of SSL on Testing Lab
• Business Impact of SSL on Testing Lab
• UL approach to testing SSL
• Quality Assurance Testing
UL and the Future of Lighting :: Solid State Lighting

Technology Transition

Traditional Lighting

| Lamp / “bulb” | Edison-era Technology
	Filament / Vapor based
Luminaire	“brass and glass”
Ballast	Low-tech electronics
Switches & Dimmers	Simple and mechanical

Solid State Lighting

Diode Package	Solid-state semiconductor, easily shipped, not fragile like glass, low & line voltage
Driver	Current regulating power supply, breaks regional voltage barriers
Optics	Integrated and standalone, control light focus and beam spread
Thermal Management	Most are passive heat sinks, active in high power applications (fan, water, and gas based)
Enclosure	New shapes, sizes, applications based on small packages and large relative output
Connectors	Daisy chain diode arrays, drivers and control products
Power Generation and Storage	‘Green’ trends in power delivery, solar powered, battery backup streetlights and landscape spikes
Lamp Holders / Sockets	New interfaces for drivers, packages, enclosures, thermal management in development
Wiring and Wireless	Ceiling grids, fine wiring, t-bars, induction, power and control over microwave
Controls	Electronic control light output, color temp, multiple locations, wireless implications, energy management
Software	Programmable directions, plug and play recognizes led system, software safety is slow
Components being used in combination to create both end products and more advanced components.

UL is ready for components with industry leading recognition programs, new low-cost services in 2010 like Component Replacement and Conditions of Acceptability.
Lighting Terminology

SOLID STATE LIGHTING (SSL)

<table>
<thead>
<tr>
<th>LED</th>
<th>OLED</th>
<th>PLED</th>
<th>LEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>light emitting diode</td>
<td>organic LED</td>
<td>polymer LED</td>
<td>light emitting plasma</td>
</tr>
</tbody>
</table>

LED
- Semiconductor diode ‘packages’ include phosphors, substrate, anode and cathode and integrated lenses
- Require driver (power source) and luminaire (enclosure)
- ~ 100 lumens / watt

OLED
- Electroluminescent film comprised of carbon-based compounds
- Rigid or flexible, transparent or opaque
- Developing technology in TV, moving to Lighting
- 50 lumens / watt, lifetime and performance are issues

PLED
- Electroluminescent polymers, typically liquid, printable, paintable materials
- ‘bleeding edge’ lighting technology - in R&D presently
- Could reach 60 lumens / watt initially

LEP
- Uses solid-state amplifier to guides RF (radio frequency) signal into a bulb containing gas and metal halide materials, vaporizing them into a plasma state.
- Intense, >140 lumens / watt, high CRO, high lifetime

Source:
- PLED: http://www.chem.ualberta.ca/~jveinot/research.html
UL’s Balancing Act Related to Global Standards
Facilitating Global Trade - Standards

UL Challenge: Stay technically relevant as new technology and new standards develop globally

- Safety NA
- Safety INTL
- Interoperability
- Wireless and EMC
- Energy Efficiency
- Environment Sustain
- Lifetime
- Software Controls
- Standards

Organizations: Zhaga, ZigBee Alliance, enocean alliance, Emerge Alliance, IEC, UL, Energy Facts, DesignLights Consortium, IDA, Lamprecycle.org
Lines are blurring ::
Standard requirements are blurring across Safety, Photobiological, Performance, EMC, Environmental, etc.

New Organizations Appearing ::
New organizations are entering the standards writing space in Interoperability (Zhaga Consortium), LV Power (eMerge Alliance). UL is there.

Fast-Track support from UL ::
UL wrote the standard on SSL – UL8750, and we are driving it forward with the help and support of the Lighting industry.

Today UL can provide industry-leading support in Safety, Energy, EMC, Photobiological, Environmental services and more.
Role of a Third-Party Lab

• **Support Energy Efficiency Programs**
 - Initial Evaluation & Qualification Testing
 - Issues Independent Test Reports
 - Serves as a Certification Body
 - Conducts Quality Assurance Testing

• **Optionally**
 - Conduct Inspections at Mgrs. facilities
 - Monitor Production Testing
 - Coordinate Challenge Testing
Role of Third-Party Lab

• Why use Independent Third-Party Labs?
 o Helps ensure confidence in DLC products
 o Not affiliated with manufacturer or end-users
 o No commercial bias is present
 o Specialized test facilities
 o High level of technical expertise
 o Accredited by third-party accreditation bodies
 o Participate in external & internal proficiency testing programs
Impact of SSL on Testing Labs

- Train the Technical and Sales Staff
- New Equipment & Instrumentation
- Adjust staffing levels to handle workload and increased capacity
- Develop new data sheets/testing reports
- Ensure turn-around-times meet expectations
- Expand Accreditation Scope
Business Impact of SSL on Testing Labs

• Develop a global approach to Energy Efficiency Testing

• Adapt organizationally to address multiple Programs globally

• Develop a high level of technical competency

• Participate in specification development with various programs

• Ensure consistency & accuracy in reporting globally
Globalizing Supply Chain

UL’s global network of labs is ready for the SSL challenge!
Industry Leading Lighting Technical Coverage

SAFETY
- UL
- IEC
- IEC62471
- PSE

PERFORMANCE & ENERGY EFFICIENCY
- ENERGY STAR
- DesignLights Consortium
- Zhaga

Safety (US & IEC)
- 20 locations in NA, EU, & Asia

Performance (Energy Eff. + Zhaga)
- Allentown, PA, Scottsdale, AZ
- Burago Italy, Manesar India, Nansha China
2012 Grand Opening of New Lighting Energy Efficiency Lab in Allentown PA

- Dedicated to Performance and Energy Efficiency testing of Lighting Products
- 38,000 sq. ft.
- Approximately 20-25 Technical Staff
- Designed to accommodate up to 10 Type “C” Goniophotometers
- Multiple integrating spheres up to 3 meter in size
- All testing done in one facility
- Photometric Training Center
UL’s Performance Labs & Experts – Americas

UL Allentown, PA - North American Region
Full Photometric Testing & Zhaga
UL’s Performance Labs & Experts – Americas

UL Scottsdale, AZ - North American Region
Full Photometric, & Ballast Testing, Manufacturing of Goniophotometers
UL’s Performance Labs & Experts - Europe

UL Burago, Italy - European Region
Photometric Testing and Safety Testing
Milan, Italy
UL’s Performance Labs & Experts – India/ASEAN

UL Manesar, India
Photometric Testing & HVAC Testing
UL’s Performance Labs & Experts – CHINA / ASIA

UL Nansha, China - Asia Region
Full Photometric Testing & Appliance Performance Testing
Types of Testing

Energy Efficiency Testing

- Energy Star Testing
- Design Lights Consortium
- CALiPER
- Utility Company Rebate Programs
- Verification Testing & Quality Assurance

- Ballast Testing
- Audible Noise Testing
- Start Up/Run Up Time
- Operating Frequency
- Temperature Spot Measurements
- Light Output over Temperature Measurements/Studies
- Angular Uniformity of Color
- Rapid Cycle Stress Testing
- Lumen Maintenance/Life Testing
- Transient Testing
- Custom Testing Protocols and Development of Protocols for Big Box Stores
Complete Photometric Testing Solutions

Sample of Measurement Capabilities:

- Luminous Intensity Distributions
- Luminaire Efficacy
- Total Luminous Flux
- Zonal Lumens
- Spectral Power Distribution
- Correlated Color Temperature (CCT)
- Color Rendering Index (CRI)
- Input/Output Electrical Measurements
- Operating Frequency
- Lamp Start & Run-Up Tests
- Iso-Candela Plots & IES Files
UL’s Lighting Test Capabilities

- Color Measurements
- Electrical Measurements
- Life Tests
- Photometric Measurements

Energy Star Test Equipment and Capabilities:
- In-Situ Temperature Measurement
- Noise Testing
- Operating Frequency
- Angular Uniformity
- Lamp Life Testing at both 25°C ambient and 45°C ambient
- Rapid Cycle Stress Testing
- Transient Testing
- Minimum Operating Temperature
- Start/Run up Time
- Environmental Temperature Test Chambers
- Ballast Testing Capabilities
Quality Assurance Testing

• **Effects on the lab?**
 - Sample selections can be challenging
 - Requires additional test equipment
 - Requires additional dedicated staff
 - Ensure that QA testing doesn’t impact TAT

• **Burdens on the lab?**
 - QA testing is normal for a Third-Party lab….
Thank You